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ABSTRACTKv This paper presents a method of optimal filter

design for sampled data systems, based on the theory

originally developed by R. E. Kalman. The first half

of the paper deals with the theoretical development

of mathematical models for linear, discrete dynamic

processes and the optimal filter equations for such

processes. The latter half discusses digital pro-

gramming techniques for optimal filter design followed

by two illustrative examples.

I.i

7 , oi



PREFACE

During the past several decades a fair amount of

theoretical effort has been devoted to the study of

problems which are of a statistical nature. Not the

least important is the class of problems In communica-

tion and control which involves the separation of random

signals from rardom noise, or the estimation of the

states of a dynamic process based ox, noisy observations

of a few of these states.

In several papers written since 1960, R. E.

K(alman developed a theoretical approach for optimization

of filters for the above mentioned class of problems.

The theory is not all-embracing In that certain con-

ditions must be satisfied before his technique can be

employed.

The intention of this paper is to present a method

for optimal filter design for sampled data systems,

based on Kalman's approach. The first half of the

paper deals with the theoretical development of mathe-

matical model parameters for linear dynamic processes

lii
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and the* optimal f ilter equations f or such processes.K The latter half' discusses digital programm~ing techniques

f-or optimal filter design followed by two. Illustrative

examples.
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CHAPTER I

MODELS FOR RANDOM PROCESSES

Before one can hope to achieve any amount of

effective filtering, it is necessary that a fair amount of

knowledge, about the physical phenomena to be observed,

is known. For instance, if a sine wave buried In noise,

is to be recovered, an apriori knowledge of the signal,

i.e. frequency of the sine wave, is necessary. In addi-

tion if the statistics of the noise are known then

optimum filtering can be achieved. It therefore becomes

necessary to make a study of the message (signal)

process before the construction of a filter is attempted.

To maintain generality we will henceforth only consider

random signals with the added stipulation that these

signals are produced by linear dynamic systems excited

by white noise.

1-1 LINEAR DYNAMIC. SYSTEMS (CONTINUOUS
TIME).

Since we are concerned only with linear dynamic

systems a brief review of linear differential equations is

in order.

L______........_



A first order differential equation

has a solution (see Appendix I)
o+ (1.2)

0

where CE is the homogenous solution and
0

is the particular solution.

Consider now a set of first order differential

equations, which define a linear dynamical system -o

or In vector notation

where x and u are I x n column vectors and F and D

are n x n matrices.

The solution (see Appendix I) to this set of

equations is:

2
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or it may be written

=~~~ Jtr-)t>J(t,)O )L.cjd (1.6)

By definition we call the vector x the state of

the system and u the input or control fanction.

Since all states (xL) may not be observable we

define the output of the system to be

- h ct) x~ ' (1.7)

where Z(t) is a p vector and H(t) is a pxn matrix.

If all states were observable then H would be equal to

the identity matrix I.

We can now represent the system In matrix block

diagram form as shown in Fig. 1-1.

Fig. 1-1 Matrix blcck diagram of a linear dynamic system.

The integrator in Fig. 1-1 actually represents n

integrators, one for each state of the system, while

F(t) shows how the outputs of the integrators are fed

3



back to the inputs of the various integrators. Perhaps

a look at a simple 2-state system at this time might

clarify Fig. 1-1.

GIven the linear dynamic system of Fig. 1-2, deteho-

mine F(t), D(t), and HK(t).

U W5

F1. 1-2 A 2-st-ate system

We can Immediately write down the equations for

the system as:

l (1.8)

..k 2 (tr)  W x ,. L:k X (t ) @ (1.9)

and our observable state(s)

It is Immediately obvious that

*F z~: J (. A.cna HC~U0

thus giving the vector differential equation

4



and (1.*

1-2 LINEAR DYNAMIC SYST,- ". ' 
TIME).

If we siecify the equations of a linear dynamic

system in the form of difference equations then they

are easily mechanized on present day digital computers.

With this in mind the scope of this paper will be

directed towards discrete-time situations.

In (1.6) we see that the continuous-time solution

to a linear dynamic system is:

to

If u(r) is held constant over the Interval of

Integration then we obtain:

where

A(t)to) t J (tr) D (r) dr (1.14)
t~o

or more conveniently

x(t t 1) C ,+ f)-0.



In (1.15) we assume a sampling period of one time

unit. A block diagram of the linear discrete-dynamic

system is shown In Fig. 1-3.

Fig. 1-3 Matrix block diagram of a linear discrete-

dynamic system.

1-3 DETERMINATION OF MODEL PARAMETERS.

The matrix (t, )occuring in (1.6) and (1.13) is

called the TRANSITION matrix and has the following

properties:

o, t0 ) -- r (Identity Matrix) (1.16)

(1.16) and (1.17) are fairly obvious and (1.18) is

obtained by setting uC t) to zero and differentiating

(1.6). These properties can be useful in checking the

accuracy of analytic expressions for the 4 matrix.

If the F .matrlx is constant then the transition

6



matrix elements depend only on the time difference

t-to and can be calculated from the following expres-

sion:

e !5(F(t--t]0 ) 1)

-:0

A second (and easier) method for obtaining 1(t,to)

is by the use of signal flow techniques and the appli-

cation of unit impulses to the input of selected

integrators. This method will be demonstrated else-

where in this paper.

The A matrix may be obtained by performing the

integration in (1.14) or by the second method mentioned

above for the matrix.

1-4 THE GAUSS-MARKOV PROPERTY.

A large number of physical phenomena possess the

Markov property. Basically It means that the best

estimate of a future state of a process can be made
E

without the knowlodge of all the past history of the

process. In a strict senze it implies that the best

estimate of a future state can be derived from the

last observation of tke states. A very trivial example

7
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would be the motion of a particle with a constant velocity

vector. Given the best estimate of the present position

and velocity of the particle one can formulate a best

estimate of position and velocity for any time In the

future. In fact the output from any linear dynamic

system is Markovian. If u(t) is set equal to zero in

(1.15) then this property may be expressed mathematically

as:

If u(t) is a gaussian random vector then the sequence

* of random vectors ...x(t-l), x(t~l), ... generated by

(1.15) Is known as a gauss-Markov sequence. The stipu-

lation that u(t) is gaussian Implies that the sequence ...,

2u(t-!), u(t), U(tl), .. are normally distributed random

vectors such that the cross-variance matrix:

cov[_ {(t,), L((t:)j :E for t,,tz (1.21)

I.e. u(tI) and u(t2) are Independent. In addition the

random vectors are completely defined by specifying their

first and second order moments.. !.e. E(u(t)) and

E(u(t).u(t) ). For the purposes of this paper u(t)

8
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will be assumed to have zero mean;

i.e. ELsx ,t)] 0 for all t (1.22)

Z(u(t).u(t) ) is called the auto-covariance matrix

of the vector u(t) and will be denoted by TJ(t), I.e:

EL) r U (t) (1.23)

or

coy [ (t) j U(t)

Considering now the state of a process, we assume

that the initial state, X(to), is a gaussian random

variable of zero mean and arbitrary variance. By

repeated application of (1.15), we see that future states,

... , x(t-l), x(t), x(tl), ... will also be gaussian

random variables, since they are obtained by linear com-

binations of gaussian random variables.

In probability terminology we may now define the

Gauss-Markov property. Since u(tl) and u(t 2 ) are

independent for tl 6 t 2 , then the conditional probability

distribution of x(t) Is dependent only on the previous

state, I.e:

P (&(t ~~i gI±I) x (tAc~ (t -3),.(124

- P '( I 1 (t-1)

9



Where ] is an arbitrary vector,

1-5 THE COMPLETE MODEL

In Fig. 1-3 the observable output vector y(t) cannot

be measured with infinite accuracy and therefore to com-

plete the model for random processes (with previously
mentioned restrictions), a source of measurement noise

must be added. This is illustrated In Fig. 1-4 where v(t)

is a noise vector having the same dimensionality

Fig. 1-4 Model for randora processes generated by discrete-

time linear dynamic systems.

as Z(t). v(t) is white noise (gaussian), which we assume

to have zero mean with arbitrary variance:

E [ o (1.2)

In addition we specify that v(t l ) and v(t 2 ) are indepen-

dent for tl 1 t 2 , i.e:

CO'V[vt))V(t)] =0 or t.# Ire (.27)

10



The output of our model is theref ore z(t), whichK contains the observable vector y(t) corrupted by additive

white. noise, v(t).



CHAPTER II

THE KALMAN FILTER

2-1 DEFINITION OF THE FILTERING PROBLEM

In Chapter I, a model of a linear dynamic system,

excited by white noise, was developed. The purpose of

the Kalman filter Is to give a best estimate of all states

of the system, based on noisy observations of the

observable states. Since the system Is linear we may

write

Xct) t (2.1)

wher-e x*(t) Is the best estimate of x(t) , based on the

current observation z(t),

A
x(t) is the best estimate of xt), based on the

previous observation z(t-1),

A
Z(t) Is the best estimate of z(t), based on the

previous observation z(t-1), and,

G(t) Is an nxp gain matrix, the magnitude of its

(1oments being Indicative of the amount of Information

carried in z(t).

12
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Tr- solve the filtering problem, the filter must

therefore deter7aine values for the three unknowns on

the right hand side of (2.1), namely x(t), z(t), and G(t).

2-2 SOLU'TION OF THE FILTERING PROBLEM.

Since we assume a complete knowledge of the

dynamics of the systern, computation of _(t) and z(t) Is

quite simple.

A&t It = C -) (:-, 2.23)
however since ( for all t then

A

In the model we saw that

e) )+ wc)(1.28)

: HIb) Et -a '1Ct) +Ez~)
now w

H() E(t) (+.4)

since E L~icLt)J

13



Having now developed expressions for x(t) and zA(t'),

Sa matrix block diagram of the filter (see Fig. 2-1) can

be produced. The only unknown yet to be calculated is

the ._otial Z matrix G(t). Before approaching this

calcudation a criterion for optimal must be specified.

Fig. 2-1 THE OPTIMAL FILTFF-.

The criterion used is that we wish to find G(t)

such that the loss function

L. ~ Is minimized. (2.5)

That is to say that the sum of the variances of the

errors associated with the estimate of the !ndividual

states is minimized. Because the errors are gaussian

It can be shown (ref. 1) that this criterion will In fact

produce an optimal gain matrix.

A number of different derivations for G(t) are

available in the literature. For the most part these

derivations are mathematically rigorous and somewhat

complex. Perhaps the easiest one to follow is a seml-

14
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heuristic approach used by Schmidt, [43. We wish to

minirnize the scalar loss function defined by (2.5). Note

th-at

where the Trace operator denotes the sum of the main

diagonal elements, and (t) is left out to avoid unneces-

sary clutter.

Expanding the covariance matrix in (2.6), using

(2.1), we obtain

- ( --) -) -G G

-E (24 -_-) )r6 r]

b ut an4 H

Substituting for z and 2, and noting that EL.QY-2) Jro

we obtain

E [ l: -z U. F [ .4 )6_21 "EG i (z-' _-
_E L( )4 G- HG H , ... -.. z'

-~ ,r T "]

=P-GHP -PHrG T tG(HPMT- R )Gr (2.7)

where )r *[ and R"" "r'z =

. :'15

//vG. {



We now wish to find an expression for G such that

the trace of (2.7) is a minimum. Since the terms In

(27) are matrices this could become a very arduous task.

L-et us consider for a moment that (2.7) Is a scalar

expression (i.e: the matrices are lxl in dimension), thus

reducing the right hand side to:

P i-i & (H P - --R)

Te now differentiate with respect to G and set the

resultant to zero obtaining

-a.pHT j 14HPH T + )G

or G = PH 7 (H PH ' -R) -  (2.8)

It can now be shown that (2.8) will in general

provide the optimum gain matrix by letting

C G - p I p ' t - )

or G C PHTCHPHr+R) "1  (2-9)

Simple substitution of (2.9) for G in (2.7) will

reveal that the trace of (2.7) will be a minimum for

%*0. Thus (2.8) provides us with the optimum gain

16



Combining equations (2.7) and (2.8) resilts in an

expression for the covariance matrlx of the error in the

filter's estimate of the states of the system;

E[C × x)( ~X' *)7 P-PHT(HPH ' R)'HdP - P H LPH ( HPfTi R)lJ. r

0. t L p j ( H P H + H).[ P H r-t RI EP H7 ( H P -H)3

pi Pl-(O,.tq'C ) o PH W ), W) A& (2 .10)

In order to complete the filtering problem a recur-

sive relation for the conditlonal covariance matrix,

P(t~t-l) must be derived.

Recall that

and X- (t

17 E (t, ) - ) + -1( .k , /. 1(t/i)]

L(. ~ ~ ~ ~ -0 -1-u -.aef *(.g j)cir*j,

17
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since the expected values of the cross-product terms are

zer~o.

Def ine 9W (t)L''L t-1 J~ Jdt (2.12)

Combining (2.10), (2.11), and (2.12), we obtain
Ak

.(I (t -1

2quation (2.13) is called the variance equation which

denotes the covariance of the error between the actual

states x(t), and the pr, .dicted states A(t,t-l).

Since (2.13). is recursive, an initial covariance matrix,

El(t , must be specified, and, since we assume that x(t o )

is gaussian, with zero mean, our best estimate of x(t o ) Is

zero. Hence

In determining P(t o ), one will often find that the

elements off the main diagonal will be zero, that is to

say that the individual initial states are independent of

one another. To illustrate this, perhaps a simple example

will be helpful. Let us suppose that we are going to make

18



observations of the position of a particle in motion, and

assume that the particle's velocity Is constant but unknown.

The two states of the system are position and velocity.

Any knowledge one might have about one of the Initial

states will in no way assist in determining the other Initial

state. Hence the two states are Initially independent Inso-

far as the observer is concerned. However, as more

observations are made, the two states build up a depend-

ency and the off-diagonal elements In P(t), generated by

(2.13), become non-zero.

2-35 SUMMARY OF FILTER EQUATIONS.

For convenience the equations for the optimal filter

are grouped below:

.Pt t-.()e)t[ )'Grt-)H(t'iP( '-I]J(t,&) .+ 9 It) £

:;G6 ") : Hc ,) EH (t)P(t)Hrt) + R(t)

A
i: z+It.)f t) ! (tjt-1 )t &- ( -

:IV

(9 A

... , ) x - - (1

-+~~~ - I- I

. 19e7



CHAPTER III

FILTER DESIGN

3-1 SOME PRELIMINARY CONSIDERATTONS.

The equations for the optimal filter were derived in

Chapter II, and are summarized In Section 2-3. Design

of the optimal filter consists mainly of writing a suitable

computer program to carry out the calculations indicated

by the filter equations I through V. The Input to the

filter is the noisy observation vector, z(t), and the out-

put is the best estimate of the system state vector,

One of the chief problems In carring out the filter

computatlorn3 is the determination of the inverse of the

matrix found In equation I. If this matrix Is singular,

then the Inverse does not exist. One must then resort

to the calculation of a pseudo-inverse. The manner In

which the pseudo-tnverse Is determined is shown inlC].

and will not be discussed further here. In either case

the time required for inverse computation Is relatively
4

high, the time being roughly proportional to the cube of

20



the dimensionality of the matrix. On present day com-

fpuzers several seconds of computation time may be

necessary to determine the inverse of a 4x4 matrix.

This being the case, one can easily see that the sampling

rate may be adversely affected. In therefore behoves

one to make a close study of this matrix to see if com-

putation time can be reduced.

To illustrate, let us assume we are going to track an

object in space, receiving position Information only. The

observable states are range, bearing, and elevation ,

) and we wish to determine best estimates of these

states along with their derivati es (F, - , ) Our state

vector would then be set up as follows:

xl
x2

GI x3
X (t) x4

x5
x6

The H matrix would become

100000

I(t) - 001000

000010



and hence the matrix ( HPH + R ) would be 3X3 In

dimension.

Recalling that P(t) is symmetrical, computational

reduction might be poasible If we can assume

4or L= 4

and further that R(t) has non-zero elements along the

main diagonal only. Making the above assumptions the P

and R matrices would become

p1I p12 0 0 0 0
p21 p22 0 0 0 0

P (t) - 0 0 p33 P34 0 0
o 0 P43 p44 0 0
0 0 o 0 p55 p5 6

0 0 0 0 p65 p6 6

and R (t) - [r11 r0 0~3

We would then. -'ind that

1 0 0
pMl + r1

( P H + 0 - 1 o
p33 + r22

0 0 1 ...

p55 + r33

22



since the inverse of a matrix, having non-zero elements

along the main diagonal only, Is found simply by inverting

the diagonal elements.

Suppose now that rate information is also available

so that measurements of all six states are made. If,

in addition to the above assumptions, we can assume that

the cross-variance elements in the P matrix, involving

the even subscripted states, are also zero, then

a13. p12 0 0 0 0
p21 a,22] 0 0 0 0

0 0 [33 p344, 'C) o

C o 0 [&.r5 p5

Lo 00 0 oP 65 a66J

where aii pii + rii, I = 1,6

thus reducing computational time by at least 63 /3x2 3 or

9 times.

A further reduction might be realized in the given

example by the use of three filters doing 2x2 matrix

manipulations as oppcsed to one filter computing at the

6x6 level.

Another consideration is the time lag between input

and output. In real time situations this could be of the

23



utmost importance. Aglance at the filter equations, I-V,

indicates that if all five equations are computed after the

Input, z(t), has been received, then a considerable time

lag could ensue before the output is generated. On the

other hand, if the transition matrix, (t,t-l),, is known

at time t-l, then equations I, II, III, and IV can be

computed prior to receiving the input. The time delay In

this case would only involve the time taken to compute

V, which might be In the order of mlcro-seconds.

3-2 FILTER FOR A STATIONARY PROCESS.

It is to be noted that equations I and II do not

involve the observations, z(t). If the process, which we

are trying to observe, is stationary, i.e;4 , H, Q, and

R are constant matrices, then it will be found that the

optimal gain matrix, G, will stabilize to a constant value.

This matrix could then be precomputed (prior to any

observations), and the filter would be reduced to the

relatively simple calculations indicated by III, IV, and V.

A digital program, which computes the optimum

gain matrix for a stationary dynamic process, has been

written in FORTRAN, and Is found in Appendix II. It

24
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is completely general and can handle any system with up to

twelve states. It is written as a subroutine to eliminate

possible conflict in the naming of variables. Essentially

the subroutine carries out the iterations indicated by I

and II until such time tnat no element of the gain matrix

changes from its previous value by an amount more than

.00001. If higher accuracy is desired, this constant can

be easily changed to the degree of accuracy required.

Further description on the usage of this program Is found

in the Appendix.

3-3 THE GENER2AL FILTER.

In the general case, non-stationarity is assumed.

Appendix III contains two programs, the first of which

performs the computations indicated by the five filter

equations after each observation. The second program,).

allows for the case when the transition matrix is known

before an observation is made and hence reduces the

time lag (previously discussed) between out put and input.

Further discription of the usage of these programs is

contained in the Appendix.

25



CHAPTER IV

ILLUSTRATIVE EXAMPLES

This section of the paper will deal with two illustra-

tive examples. The aim of the first example is primarily

tutorial. A thorough discussion of the model will be given,

followed by the design of an optimal filter. The second

example will deal with the track smoothing of an anti-shl °

miszile. A mathematical model of the missile in flight will

be set up and a filter designed for optimum track smooth-

ing.

EXAMPLE I :
/

Given the transfer function for a low pass filter In

Fig. 1, a) determine all mathematical model parameters,

andw b) design an optimal filter which will give a best

estimate of the states in the filter. Assume that the

excitation at the input (u(t)), and the additive noise

(v(t)) at the output are gausslan and stationary.

F ig. 4-1 Low pass filter of Example I.

26
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Our f irst step is to convert Fig. 4-1 to a more

convenient form -for analysis as shown In Fig. 4-2.

Ai. -2Signal- fLlow graph f or E~xamnple I

From Chapter 1, equations (1.8) through (1.12), we see

that (t) Fx(t) + IDu(t) (4.1)

or

We wish now to find the solution to (4. 1) in the

L o r; given by (1.15). To do so we must assume that

u~t) is piece-wise constant.

The and LA matrics will be obtained by using signal

flow techniques- and applying unit Impulses at selected

locations. in the diagram as Illustrated In Fig- 4-2.

From Fig. 4 -2 we see that

27



and

LX I 
0 +J

S

+ S2 +3S+2

# zx (5) -71 , ... .-

c 1Ls) - x:.(_.) - -__ , ._ -2

atw, t 'Z- _ S

(S) -.

Aia((S) 7r ____

6a) - z S'. 3 +

Taking tA-he inverse of the above and letting the sample

Interval be I we find

rr [--r eT~~

C5) (t t) = (4.2)

-28

28
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and, 0- E-t- e-2

'The solution is now in the form of (1.15)

* x~~(t+T) &0 ~~t-~ .t ± (trt Q L)(.5

and the mathematical model is shown in FIg. 4-3,

Fizure 4-3 Mathematical model f or Example I

where I-(t) is obviotL.31y[i OJl since only one state, xl is

observed.

b) Design of optimal filter

We recall that optimum filtering Is based upon a

knowledge of the statistici; of u(t) and y(t) 0 and there-

fore we assume that E[u(t).u (t)] and E[Z(t)'v.t)J are

part of the problem statement, We now calculate the

covariance matrix

29



The only remaining task is to select an initial

covariance matrix, P(to) , for our best estimates of

the initial states of the model. The selection will depend

to a great extent on a good knowledge of the problem.

In this instance the best selection would probably be the

main diagonal of Q(t) (previously calculated), with the

off-diagonal terms set to zero. The off-diagonal terms

are zero initially since knowledge of x:l(t o ) (at the first

measurement) will in no way provide any information

aboutx2(to ) iexl(t o ) and x 2 (to ) are uncorrelated Inso-

far as the observer is concerned.

Since the system under study is stationary, the

optimum gain matrix may be pre-determined. This

entails the use of* SUBROUTINE CONFIL in Appendix

II. A sample period of 0.1 secs. Is used. Using (4.3)

and (4.4), we compute the covariance of the states,

Q(t). The element qlj In Q(t) is a measure of the

expected signal power. By making rll (measurement

)noise power) equal to various multiples of ql, (Including

30
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zero) we are able to study the behaviour of the gain

matrix as a u , nctlon of noise-to-signal power.

The curues in Figure 4-4 indicate how the optimum

gain matrix elements behave as noise-tc-signal power Is

increased. With N/S = 0 we see that G1 is equal to

unity. We expect this since there is no measurement

noise and hence the best estimate of the observable

state is the measurement z(t) itself. However as the

noise power is increased the gain element falls off and

the filter starts to rely more on the predicted value

and less on the observed value. The matrix element G2

also falls off in a similar fashion, with x(t) becoming

less dependent on z(t) as the relative noise power

increases.

" EXAMLE II

Problem Statement - It is known that the enemy's

main anti-ship weapon Is an alr-launched missile which is

normally launched at a distance of 250 to 300 miles from

target. After launch, it climbs to an altitude of 40,000

ft., attains a speed of approximately 1000 mph, and

maintains this speed by use of a sustainer motor. When
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within 25 miles of the expected location of target a

saearch device is switched on which pinpoints the target

and enables the missile to guide Itself to target. A

t~rp'cal friendly ship at sea Is fitted with a mono-pulse

zearch radar system with a scan rate of 10 scans/min.

The ship is fitted with a digital computer and target

information i. :-vrilable to the computer. It Is known

tha t the probability distribution function of the

accumulated error (in both x and y) is approximately,

normal with zero mean and 2 mile standard deviation.

Data accumulated on similar missiles Indicate that,

due to erratic thrust developed by the missile motor and

average atmospheric turbulence, the velocity of the

misile varies in a random fashlon (approximately

gausslaa). The standard devlation, of this randomness

is about 2% of mean velocity.

Design .a filter which will determine best estimates

of the missilegs position and velocity. Assume that

attack is equi-likely, from all directions.

SOLUTION

Our first step Is to set up a mathematical model
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which describes the dynamics of the missile, In the form

( t) (t) t D C)t)

Considerin- only the component In the direction we

obtain

L + (4.6)
LX?. L×- 1- I,[,

where x-l is the position on the x axis

xp is the velocity component in the x direction

A similar vector equation would describe the

dynamics in the y direction.

As we have seen earlier the solution to the above

equation Is

)1 t) t -ti)_l Ct) (4.7)

assuming ux(t) is piecewise constanto

We now must determine (t 2 ,tl).

From (4.4) we obtain the model shown In Fig 3.5., a

simple i/SL plant.
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L.t) X t)Xt

Fig 3.5 Model for mrssle In Example Il.

The parameters and are

Since we intend to sample at a rate of 10 tlmes/

min. (s:can rate of radar) then t 2 -. t i  6 seconds.

or T= 1 hr.

LCI
and

AL(t)t-T~z [
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To complete the model we requilre values for H(t) and

Fr'om the problem statement

anisince we are observing position only

Summarizing our model we have (Fig- 4.6)

LL t DelO~ay Xi t

F~ig 4.6 Mod--l for' Missle of Example 11

We are now -ready to set up the filter, One

recluirement is the initial covarlanice matrix ( o). Since

the mlsszle can appx'oach u~s fromn any direction with

equal probability our-best estimate for the Inital states

is zero for -both position and velocity,, le

[X?. -Fl "
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We therefore find that

P(o) xo.xo)

To determine this -we must have a knowledge about

the dotection capability of the radar. A standard search

radar looking for an object at 40,000 ft. elevation may

have an initial detection density functio n, as shown in

Figure 4.7, in all directions in the x-y plane.

0 0-=200 iqange (miles)

FIG. 4.7 Probability density function for inital , ,"',
detection

Since the missile may approach from any direction

let us assume that the standard deviation when con-

s"_-ering the x direction only. is. 100 miles. Similarly let

uz assume the velocity component on the x axis has a

standard deviation of 500 mph. We then find. that

PLo (050
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Our last remaining task is to select a value for (0)

to provide numbers for the Q(o) matrix. Our best

initia.l esti-mate of this quantity would be the P22 element

inV2?(o). A)

H-ence

Subsequent values of V.(t) could be calculated by

usin x2 (t).

Wa, are now prepared to write a program for the

optima filter.

Since the transition matrix is a constant but Q

is variable (being a function of Vx) the 2nd program of

ppndhx 1II1 would apply.

We now summarize taldng into account the y com-

poneiat of direction. The flow chart for the filter

calculations io shuwn in Appendix II1

n (number of states) 4

p (nunber of observables) - 2

T (sample interval) 1/600 hrs.
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Y( x3(t)

4 ) yt x4(t)j

Y(ttj
Lx3

z~t) (t-

~-~t) 710 0 0

LO0 .1 0

L(t+,T,t) I T 0 0

0 0 1iT

q2 2 (0 4(o) .02 x 500) 2= 100
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1 0
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APPENDIX I

LINEAR DIFFERENTIAL EQUATIONS

Let us consider the solution of .a Ist order dIf-

ferental equation by the use of an integrating factor

(p), to make an exact differential.

Given:

dx
-_ +ax = u(1)dt

Find:

x(t) = f(xo, u, a, t)

Solution:

Multiply (1) by p(t) and attempt to make the

resulting equation an exact differential. We have

dxp- + pax pu
or (2)

d d_
- (px) dt x + apx pu

and

d_ (px) = ( ap x + pu (3)dt dt -d

Considering the homogeneous part of the problem

(i.e., u = 0), we can make (3) an exact differential

by setting

44
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-ap 0 (4)dtfr..We may guezz at a solution f or ()as

p =Poeat (5)

and by substitution in (4), verify that it is a solution.

Applying this to (3) gives

d- a at

t (Poetx) (0) x + Po (6

Integrating

Multiplying by e gives

t

or x e-,tx 0 + e-at f-earu(*r) d (8)

-at e a(t-)u )d 9

The fd'.rst part of (9) represents the homogeneous

solution while the latter part

= S e-a(t-'#) u(r) dr

4:5



r.presents the particular solution or convolution integral.

Now lot us consider a set of n of these Ist order

differential equations

dx.dt- f I(xj, u) I- 1, . 7

or

= Fx + Du (11)

where x and u are I x n column vectors and F and D

,-re n x n matrices. Multiplying (11) by the integrating

factor %p(t), (a row vector) we obtain, after some

manipulation

dt~ ( '  +t x + FIDu (12)

Az before we assume a solution for the adjoint variable,

p(t) as

- - -Ft

p = po e

Substituting into (12) and Integrating gives
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0 Le t X z t S e-F'IDu(7) dTJ (13)

Multiplyin- both sides by e F.gives

x=eFt x t-r7) IDU d7 (14)

Of ten the above is expressed in the f orm

= CJt(t1, to) x(t 0 )+ Acti, to) u(to) (15)

where U i, the transition matrix or fundamental mnatrix,

and L represents the distribution matrix with u(-t)

held constant at its value uk't 0 ).
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APPENDIX II

K THE STATIONARY FILTER

PURPOSE:

The attached program can be used to determine the

stabilized optimum gain matrix for the estimation of the

states of a stationary prooessw

USAGE :

1. Calling Sequence

CALL CONFIL (P, Q, iR, TR, H, KN, KP, XER,

G)

2. Arguments

a. P- initial covariance matrix of system states -

dimension (12 x 12)

b. Q - covariance matrix of states due to gaussian
excitation - dimension (12 x 12)

c. R - covariance matrix of measurement noise -

dimension (12 x 12)

d. TR - transition matrix of process
dimension (12 x 12)

e. H -matrix which defines the observable states-
dimension (12 x 12)

f - number of states in the system -

dimension (scaler)
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. KP - number of observable states -

dimension (scaler)

h. XER. - error indication (= 2 implies the inverse
of a matrix could not be obtained)
dimension (1)

I. G - optimal gain matrix -

dimension (12 x 12)

3. Accuracy: see Cohapter III

4. Equipment Configuration: ODC 1604 with FOI TRAN

60.

5. Cautions to User .

a. All arguments in the main program mnuist be

dimeinsioned the same as those in CONFIL,.

b. The main program should contain an ERPQR TEST

(see 2h.)

6. Flow chart showing Typical Usage (see Fig. $1~i).
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Star

Initialize

AZLCCFIL

yes indicate
K( , R= 2? error

No

conuej

Fig. 11-1 F~r)W diagram~ showing typical vsage
of CONFIL
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APPENDIX III

GENERAL FILTER.S

PP"IS BLE: Two programmes, in subroutine form, are

conta-ined irn this appendix. The first programme carries

out all filter computations after the input has been

received at each sample Instant. The time lag between

out-ut and inpat will therefore depend on the time taken

for these computations. The second programme is

dezi-ned for use when certain parameters are known (or

at lea:t a very good estimate of these parameters can

be made) prior to receiving the input at each sample

inzant. A prior knowledge of these parameters, namely

TR(tvt-l), - (t)q R(t), Q(t) (defined below), enables a

considerable reduction of the above-mentioned time lag

bet-wcen output and input. This is achieved by perform-

ing most of the filter computations prior to receiving

the input.

A. SUBROUTINE BESTX

PU-'OS,: This subroutine will provide an optimum

estimate of the state vector for any sampled-data
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lW r dyr..n:ic process (with twelve or less states) if

bo~h the process randora excitation and corruptive

m -emnt noise vectors have gaussian distributions.

USAGE

1. Calling Sequence

CALL BESTX (Pq Qq Rp TR, H KN, KP, XESR,

G9 X P. 2: X)

2. Arguments

i- nt covariance matrix of system states-
dimension (12 X 12)

b. Q - cova-iance matrix of states due to gaussian
e--cltation -
dimenzion (12 x 12)

a. - covarlance matrix of measurement noise -

dimension (12 x 12)

d. T - transition matrix of process -

dimension (12 x 12)

e, - matrix which defines the observable states -

dimension (12 x 12)

f. KN - number of states In the system -

dimension (scaler)

g. KP - number of observables states -

dimension (scaler)

h. KEX - error Indication (:-2 implies the Inverse of a
mnatrix could not be obtained) -

dimension (1)

I. G - optimal gain matrix -

dirnenion (12 x 12)
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j. XP- pre'dicted estimate of process state vector -

dimension

k. - observation vector -

dimension (12 x 12)

I. X- optimal estimate of process state vector
(generated by filter) -

dimension (12 x 12)

3. Ecuipment Configuration; CDC 1604 with FORTR AN

~60.

4. Cautions to User.

a. All arguments in the main program must be

dimenzioned the same as those in BESTX

b. The main program should contain an ERROR TEST

(see 2h,)

c. See attached flow chart depicting typical usage.
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in- ?-t r"--dy?

input z (t I

x* xc G(z)

(il necezsary)

CA-LL 1 3STX

Fig. 111-1 Flow diagram showing typical usage
of BESTX
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B3. SU13ROUTINF, GANIDPR

PURPOSE: This subroutine will provide, for each

sarple instant, a optimum gain matrix, and, the pre-

dicted values of the process and the observation state

vectors, if the process Is linear and the random

excitation and corruptive measurement noise vectors

have gaussian distributions.

USAGE:

1. Calling Sequence

CALL GAn.NDPR (P, Q, -g, TR, HX, XP, oP,

KN; KP, KER, G)

2. Arguments

a . P - initial covariance matrix of system states -

dimension (12 x 12)

b. Q- covariance matrix of states due to gaussian
excitation - dimension (12 x 12)

c. R - covariance matrix of measurement noise -

dimension (12 x 12)

d. TR - transition matrix of process -

dimension (12 x 12)

e. H - matrix which defines the observable states -

dimension (12 x 12)
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f X - optimal estimate of process state vector
dimension (12 x 12)

g. XP - predicted estimate of process state vector-dimension (12 x 12)

h. OP - predicted estimate of observable state
vector -
dimension (12 x 12)

I. KN - number of states in the system -

dimension (scaler)

j. KP - number of observable states -

dimension (scaler)

k. KER - error indication (= 2 implies the inverse
of a matrix could not be obtained) -

dimension (1)

I. G - optimal gain matrix -

dimension (12 x 12)

3. Equipment Configuration: CDC 1604 with FORTRAN

60.

4. Cautions to User:

a. All arguments In the main program must be

dimensioned the same as those in GANDER.

b. The main program should contain an ERROR TEST

(see 2h.)

c. See attached flow chart depicting typical usage.

64



"Start
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(if necessary)

CA-LL GA ND

No yes Indicate
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Fig. 111-2 Flow diagram showing
typical usage of GANIDPR
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